I B.Tech I Semester Supplementary Examinations, Jan/Feb 2015 MATHEMATICAL METHODS

(Common to Civil Engineering, Electrical & Electronics Engineering, Computer Science & Engineering, Electronics & Instrumentation Engineering, Aeronautical Engineering, Bio-Technology and Automobile Engineering)

Time: 3 hours

Max Marks: 75

Set No. 1

Answer any FIVE Questions All Questions carry equal marks *****

1. (a) Find rank of matrix using Echelon form $A = \begin{bmatrix} 1 & 2 & -4 & 5 \\ 2 & -1 & 3 & 6 \\ 8 & 1 & 9 & 7 \end{bmatrix}$

- (b) Solve the equations using Gauss Jordan method x+5y+z=9, 2x+y+3z=12, 3x+y+4z=16 [7+8]
- 2. Verify Cayley Hamilton theorem and find A^{-1} if $A = \begin{bmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix}$ [15]
- 3. Reduce the quadratic form $3x^2 + 3y^2 + 3z^2 + 4xy + 8yz + 8xz$ to canonical form by Diagonalization. Also find its nature, index rank and signature? [15]
- 4. (a) Evaluate the real root of the equation $x^4 x 10 = 0$ by Bisection method
 - (b) Compute the real root of the equation $xe^x = 2$ by the method of false position. [8+7]
- 5. (a) Prove the following. (i) $\triangle \nabla = \triangle \nabla$ (ii) $\triangle E = E\nabla = \nabla$
 - (b) From the following table of values of y = f(x), find f(0.53), using the Newton's backward interpolation formula.

Х	0.30	0.40	0.50	0.60]
Y = f(x)	0.6179	0.6554	0.6915	0.6915	[8

6. (a) Find the first and second derivative of the function tabulated below at x=0.6.

Х	0.4	0.5	0.6	0.7	0.8
Y	1.5836	1.7974	2.0442	2.3275	2.6511

(b) Evaluate $\int_0^2 e^{-x^2} dx$ using Simpson's rule taking h=0.25. [8+7]

- 7. (a) Solve $y^1 = xy^{1/3}, y(1) = 1$ by Taylor series method and find y(1.1), y(1.2)
 - (b) Find an approximate value of y for x=0.1, 0.2 if $y^1=x+y$ and y(1)=1 by Picard's method and compare the solution with exact solution. [8+7]
- 8. (a) Fit a least square parabola $y = a+bx+cx^2$ to the data (-1,2),(0,1),(1,4)

USHA RAMA COLLEGE OF ENGINEERING & TECHNOLOGY

Code No: R10107/R10

(b) By the method of least squares fit a straight line to the following data

х	5	10	15	15	20	
У	15	19	23	26	30	

I B.Tech I Semester Supplementary Examinations, Jan/Feb 2015 MATHEMATICAL METHODS

(Common to Civil Engineering, Electrical & Electronics Engineering, Computer Science & Engineering, Electronics & Instrumentation Engineering, Aeronautical Engineering, Bio-Technology and Automobile Engineering)

Time: 3 hours

Max Marks: 75

Answer any FIVE Questions All Questions carry equal marks

- 1. (a) Find rank using Echelon form $A = \begin{bmatrix} 1 & 4 & 3 & -2 & 1 \\ 2 & 3 & 1 & -4 & -3 \\ -1 & 6 & 7 & 2 & 9 \\ -3 & 3 & 6 & 6 & 12 \end{bmatrix}$ (b) Solve by Gauss Seidal method $6x_1 + x_2 + x_3 = 105$, $4x_1 + 8x_2 + 3x_3 = 155$, $5x_1 + 4x_2 - 10x_3 = 65$ [7+8]
- 2. Find Eigen Vectors of $A = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 4 & 3 \\ 0 & 2 & 0 \end{bmatrix}$ [15]
- 3. Reduce the quadratic form $2x_1^2 + 9x_2^2 + 6x_3^2 + 8x_1x_2 + 6x_1x_3 + 8x_2x_3$ to canonical from by diagonalization and find the corresponding linear transformation. Also find the rank, index and signature. [15]
- 4. (a) Compute the real root of the equation $e^x \tan x = 1$ by Iteration method (b) Find a real root of the equation $x^3-x=4$ using Newton-Raphson's method. [8+7]
- 5. (a) Evaluate $\triangle^2 \left[\frac{5x+6}{x^2+5x+6}\right]$, given that h = 1
 - (b) If $u_o = 5$, $u_1 = 11$, $u_2 = 40$, $u_3 = 22$, $u_4 = 140$, find u_5 given that the general term is represented by a fourth degree polynomial. [8+7]

6. (a)A curve is expressed by the following values of x and y. Find the slope at x=1.5

х	0	0.5	1	1.5	2
У	0.4	0.35	0.24	0.13	0.05

(b) Evaluate $\int_{1}^{3} \frac{1}{x} dx$ using Simpson's rule with 4 strips and 8 strips. [8+7]

- 7. (a) Solve $y^1=1-y$, y(0)=0 by Euler's method and find y at x=0.1, 0.2
 - (b) Solve y¹=y-x, y(0)=2,h=0.2 , by fourth order R-K method and hence find y(0.2) [7+8]

8. (a) Fit a least square parabola $y = a+bx+cx^2$ to the following data

х	1	2	3	4	5
У	5	12	25	44	69

(b) Fit a straight line of the form y=a+bx to the following data

х	1	2	3	4	5	[8+7]
У	5	12	26	60	90	

|"|'||||"|"|"|

I B.Tech I Semester Supplementary Examinations, Jan/Feb 2015 MATHEMATICAL METHODS

(Common to Civil Engineering, Electrical & Electronics Engineering, Computer Science & Engineering, Electronics & Instrumentation Engineering, Aeronautical Engineering, Bio-Technology and Automobile Engineering)

Time: 3 hours

Max Marks: 75

Set No. 3

Answer any FIVE Questions All Questions carry equal marks

1. (a) Find rank of matrix using Normal form $A = \begin{bmatrix} 1 & 2 & 3 & -2 \\ 2 & -2 & 1 & 3 \\ 3 & 0 & 4 & 1 \end{bmatrix}$

(b) Solve system of equations, if consistent 2x-y-z=2, x+2y+z=2, 4x-7y-5z=2[7+8]

- 2. Find Eigen vectors of $A = \begin{bmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix}$ [15]
- 3. Using Lagrange's reduction Reduce the quadratic form $x_1^2 + 4x_2^2 + x_3^2 4x_1x_2 + 2x_1x_3 4x_2x_3$ to canonical form . Also find its nature, rank signature and the linear transformation. [15]
- 4. (a) Prove that $\sqrt[b]{a}$ can be evaluated by using the iterative procedure $x_{n+1} = \frac{1}{b} \{ (b-1)x_n + \frac{a}{x_n^{b-1}} \}$ and hence find $\sqrt[3]{2}$
 - (b) Find the real root of the equation $x^3 x 1 = 0$ by Bisection method. [7+8]
- 5. (a) The values of annuities for certain ages are given for the following ages. Find the annuity at age 27 $\frac{1}{2}$ using Gauss's forward interpolation formula

	4	-		_	
Age:	25	26	27	28	29
Annuity:	16.195	15.919	15.630	15.326	15.006

(b) Find f(2.5) using Newton's forward formula from the following table Х 0 1 23 4 56 Y 0 1 81 16256625 1296

[8+7]

6. (a) From the following table, obtain the value of $\frac{d^2y}{dx^2}$ at the point x = 1.04

X:	0.96	0.98	1.00	1.02	1.04
Y:	0.7825	0.7739	0.7651	0.7563	0.7473
	- 4				

⁽b) Evaluate $\int_0^4 e^x \, dx$, using Simpson's rules. Also compare your result with the value. [8+7]

- 7. (a) Apply Milne's predictor corrector method to find y(0.4) by obtaining the Solution of $\frac{dy}{dx} = y + x^2$, y(0)=2 and the initial values by Taylor series method
 - (b) Solve $y^1=3x+y/2$, y(o)=1, h=0.1 by R-K method and hence find y(o.2) [8+7]

USHA RAMA COLLEGE OF ENGINEERING & TECHNOLOGY

Code No: R10107/R10

8. (a) Fit a second degree polynomial to the following data by the method of least squares

x	10	12	15	23	20
У	14	17	23	25	21

(b) Fit a straight line of the form y=a+bx to the following data

· ·							-
	х	1	2	3	4	5	[8+7]
	У	14	27	40	55	68	

I B.Tech I Semester Supplementary Examinations, Jan/Feb 2015 MATHEMATICAL METHODS

(Common to Civil Engineering, Electrical & Electronics Engineering, Computer Science & Engineering, Electronics & Instrumentation Engineering, Aeronautical Engineering, Bio-Technology and Automobile Engineering)

Time: 3 hours

Max Marks: 75

Set No. 4

Answer any FIVE Questions All Questions carry equal marks *****

1. (a) Find rank of matrix using Echelon form $A = \begin{bmatrix} 1 & 1 & -1 \\ 2 & -3 & 4 \\ 3 & -2 & 3 \end{bmatrix}$

- (b) Solve the equations using Gauss Jordan method $x_1+x_2+x_3=8$, $2x_1+3x_2+2x_3=19$, $4x_1+2x_2+3x_3=23$ [7+8]
- 2. Find Eigen Vectors of $A = \begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$ [15]

3. (a) Find the nature of the quadratic form $5x^2 + 5y^2 + 14z^2 + 2xy - 16yz - 8zx$ (b) If $A = \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix}$ then find A^{50} [8+7]

- 4. (a) Using Newton-Raphson's method compute $\sqrt{41}$ correct to four decimal places.
 - (b) Find a real root of the equation $e^x = x+2$ in the interval [1, 1.4] using bisection method. [8+7]

5.	(a)	Find the value o	f y from	the foll	owing dat	ta at $\mathbf{x} =$	0.47	
		x:	0	1	2	3	4	5
		y:	1	2	4	7	11	16

6. (a) The population of a certain town (as obtained from census data) is shown in the following table:

Ital	1891	1901	1911	1921	1931
Population(in	46	66	81	93	101
thousand)					

Estimate the rate of growth of the population in the year 1921

(b) When a train is moving at 30 m/sec, steam is shut off and brakes are applied. The speed of the train per second after t seconds is given by

Time (t):	0	5	10	15	20	25	30	35	40
Speed (v) :	30	24	19.5	16	13.6	11.7	10	8.5	7.0

|"|'||||"|"|"|

USHA RAMA COLLEGE OF ENGINEERING & TECHNOLOGY

Code No: R10107/R10

Using Simpson's rule, determine the distance moved by the train in 40 seconds.

[8+7]

- (a) Solve y¹=1+y², y(0)=0 by Taylor series method and hence find y(0.2), y(0.4)
 (b) Solve y¹=xy², y(0)=1 by Picard's method and compare the solution with exact solution [8+7]
- 8. (a) Fit a least square parabola $y = a+bx+cx^2$ to the following data

х	1	2	3	4	5
У	2	3	5	8	10

(b) Fit a straight line of the form y=a+bx to the following data

Х	-1	0	1	2	3	4	5	6	 [87]
у	10	9	7	5	4	3	0	-1	
