I B.Tech I Semester Supplementary Examinations, Jan/Feb 2015 MATHEMATICAL METHODS
(Common to Civil Engineering, Electrical \& Electronics Engineering, Computer Science \& Engineering, Electronics \& Instrumentation Engineering, Aeronautical Engineering, Bio-Technology and Automobile Engineering)
Time: 3 hours
Max Marks: 75

Answer any FIVE Questions

All Questions carry equal marks

1. (a) Find rank of matrix using Echelon form $A=\left[\begin{array}{cccc}1 & 2 & -4 & 5 \\ 2 & -1 & 3 & 6 \\ 8 & 1 & 9 & 7\end{array}\right]$
(b) Solve the equations using Gauss Jordan method
$\mathrm{x}+5 \mathrm{y}+\mathrm{z}=9, \quad 2 \mathrm{x}+\mathrm{y}+3 \mathrm{z}=12, \quad 3 \mathrm{x}+\mathrm{y}+4 \mathrm{z}=16$
2. Verify Cayley - Hamilton theorem and find A^{-1} if $A=\left[\begin{array}{lll}2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2\end{array}\right]$
3. Reduce the quadratic form $3 x^{2}+3 y^{2}+3 z^{2}+4 x y+8 y z+8 x z$ to canonical form by Diagonalization. Also find its nature, index rank and signature?
4. (a) Evaluate the real root of the equation $x^{4}-x-10=0$ by Bisection method
(b) Compute the real root of the equation $x e^{x}=2$ by the method of false position. $[8+7]$
5. (a) Prove the following. (i) $\triangle \nabla=\triangle-\nabla$ (ii) $\triangle E=E \nabla=\nabla$
(b) From the following table of values of $y=f(x)$, find $f(0.53)$, using the Newton's backward interpolation formula.

x	0.30	0.40	0.50	0.60
$\mathrm{Y}=\mathrm{f}(\mathrm{x})$	0.6179	0.6554	0.6915	0.6915

6. (a) Find the first and second derivative of the function tabulated below at $\mathrm{x}=0.6$.

X	0.4	0.5	0.6	0.7	0.8
Y	1.5836	1.7974	2.0442	2.3275	2.6511

(b) Evaluate $\int_{0}^{2} e^{-x^{2}}$ dx using Simpson's rule taking $\mathrm{h}=0.25$.
7. (a) Solve $\mathrm{y}^{1}=\mathrm{xy}^{1 / 3} \mathrm{y}(1)=1$ by Taylor series method and find $\mathrm{y}(1.1), \mathrm{y}(1.2)$
(b) Find an approximate value of y for $\mathrm{x}=0.1,0.2$ if $\mathrm{y}^{1}=\mathrm{x}+\mathrm{y}$ and $\mathrm{y}(1)=1$ by Picard's method and compare the solution with exact solution.
8. (a) Fit a least square parabola $\mathrm{y}=\mathrm{a}+\mathrm{bx}+\mathrm{cx}^{2}$ to the data $(-1,2),(0,1),(1,4)$
(b) By the method of least squares fit a straight line to the following data

x	5	10	15	15	20
y	15	19	23	26	30

I B.Tech I Semester Supplementary Examinations, Jan/Feb 2015 MATHEMATICAL METHODS
(Common to Civil Engineering, Electrical \& Electronics Engineering, Computer Science \& Engineering, Electronics \& Instrumentation Engineering, Aeronautical Engineering, Bio-Technology and Automobile Engineering)
Time: 3 hours
Max Marks: 75

Answer any FIVE Questions

All Questions carry equal marks

1. (a) Find rank using Echelon form $A=\left[\begin{array}{ccccc}1 & 4 & 3 & -2 & 1 \\ 2 & 3 & 1 & -4 & -3 \\ -1 & 6 & 7 & 2 & 9 \\ -3 & 3 & 6 & 6 & 12\end{array}\right]$
(b) Solve by Gauss Seidal method $6 \mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3}=105,4 \mathrm{x}_{1}+8 \mathrm{x}_{2}+3 \mathrm{x}_{3}=155$, $5 \mathrm{x}_{1}+4 \mathrm{x}_{2}-10 \mathrm{x}_{3}=65$
2. Find Eigen Vectors of $A=\left[\begin{array}{lll}1 & 0 & 1 \\ 1 & 4 & 3 \\ 0 & 2 & 0\end{array}\right]$
3. Reduce the quadratic form $2 x_{1}^{2}+9 x_{2}^{2}+6 x_{3}^{2}+8 x_{1} x_{2}+6 x_{1} x_{3}+8 x_{2} x_{3}$ to canonical from by diagonalization and find the corresponding linear transformation. Also find the rank, index and signature.
4. (a) Compute the real root of the equation $e^{x} \tan x=1$ by Iteration method
(b) Find a real root of the equation $\mathrm{x}^{3}-\mathrm{x}=4$ using Newton-Raphson's method. [8+7]
5. (a) Evaluate $\triangle^{2}\left[\frac{5 x+6}{x^{2}+5 x+6}\right]$, given that $\mathrm{h}=1$
(b) If $u_{o}=5, u_{1}=11, u_{2}=40, u_{3}=22, u_{4}=140$, find u_{5} given that the general term is represented by a fourth degree polynomial.
6. (a)A curve is expressed by the following values of x and y. Find the slope at $x=1.5$

x	0	0.5	1	1.5	2
y	0.4	0.35	0.24	0.13	0.05

(b) Evaluate $\int_{1}^{3} \frac{1}{x} d x$ using Simpson's rule with 4 strips and 8 strips.
7. (a) Solve $y^{1}=1-y, y(0)=0$ by Euler's method and find y at $x=0.1,0.2$
(b) Solve $\mathrm{y}^{1}=\mathrm{y}-\mathrm{x}, \mathrm{y}(0)=2, \mathrm{~h}=0.2$, by fourth order R-K method and hence find $\mathrm{y}(0.2)$
$[7+8]$
8. (a) Fit a least square parabola $\mathrm{y}=\mathrm{a}+\mathrm{bx}+\mathrm{cx}^{2}$ to the following data

x	1	2	3	4	5
y	5	12	25	44	69

(b) Fit a straight line of the form $y=a+b x$ to the following data

x	1	2	3	4	5
y	5	12	26	60	90

Set No. 3

I B.Tech I Semester Supplementary Examinations, Jan/Feb 2015 MATHEMATICAL METHODS
(Common to Civil Engineering, Electrical \& Electronics Engineering, Computer Science \& Engineering, Electronics \& Instrumentation Engineering, Aeronautical Engineering, Bio-Technology and Automobile Engineering)
Time: 3 hours
Max Marks: 75

Answer any FIVE Questions

All Questions carry equal marks

1. (a) Find rank of matrix using Normal form $A=\left[\begin{array}{cccc}1 & 2 & 3 & -2 \\ 2 & -2 & 1 & 3 \\ 3 & 0 & 4 & 1\end{array}\right]$
(b) Solve system of equations, if consistent $2 x-y-z=2, x+2 y+z=2,4 x-7 y-5 z=2$
2. Find Eigen vectors of $A=\left[\begin{array}{lll}2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2\end{array}\right]$
3. Using Lagrange's reduction Reduce the quadratic form
$x_{1}^{2}+4 x_{2}^{2}+x_{3}^{2}-4 x_{1} x_{2}+2 x_{1} x_{3}-4 x_{2} x_{3}$ to canonical form .Also find its nature, rank signature and the linear transformation.
4. (a) Prove that $\sqrt[b]{a}$ can be evaluated by using the iterative procedure $x_{n+1}=\frac{1}{b}\left\{(b-1) x_{n}+\frac{a}{x_{n}^{b-1}}\right\}$ and hence find $\sqrt[3]{2}$
(b) Find the real root of the equation $x^{3}-x-1=0$ by Bisection method. [7+8]
5. (a) The values of annuities for certain ages are given for the following ages. Find the annuity at age $27 \frac{1}{2}$ using Gauss's forward interpolation formula

Age:	25	26	27	28	29
Annuity:	16.195	15.919	15.630	15.326	15.006

(b) Find $\mathrm{f}(2.5)$ using Newton's forward formula from the following table

X	0	1	2	3	4	5	6
Y	0	1	16	81	256	625	1296

6. (a) From the following table, obtain the value of $\frac{d^{2} y}{d x^{2}}$ at the point $\mathrm{x}=1.04$

$\mathrm{X}:$	0.96	0.98	1.00	1.02	1.04
$\mathrm{Y}:$	0.7825	0.7739	0.7651	0.7563	0.7473

(b) Evaluate $\int_{0}^{4} e^{x} \mathrm{dx}$, using Simpson's rules. Also compare your result with the value.
7. (a) Apply Milne's predictor corrector method to find $y(0.4)$ by obtaining the Solution of $\frac{d y}{d x}=y+x^{2}, \mathrm{y}(0)=2$ and the initial values by Taylor series method
(b) Solve $\mathrm{y}^{1}=3 \mathrm{x}+\mathrm{y} / 2, \mathrm{y}(\mathrm{o})=1, \mathrm{~h}=0.1$ by R-K method and hence find $\mathrm{y}(\mathrm{o} .2)[8+7]$

Code No: R10107/R10

Set No. 3

8. (a) Fit a second degree polynomial to the following data by the method of least squares

x	10	12	15	23	20
y	14	17	23	25	21

(b) Fit a straight line of the form $y=a+b x$ to the following data

x	1	2	3	4	5
y	14	27	40	55	68

Set No. 4

I B.Tech I Semester Supplementary Examinations, Jan/Feb 2015 MATHEMATICAL METHODS
(Common to Civil Engineering, Electrical \& Electronics Engineering, Computer Science \& Engineering, Electronics \& Instrumentation Engineering, Aeronautical Engineering, Bio-Technology and Automobile Engineering)
Time: 3 hours
Max Marks: 75

Answer any FIVE Questions

All Questions carry equal marks

1. (a) Find rank of matrix using Echelon form $A=\left[\begin{array}{ccc}1 & 1 & -1 \\ 2 & -3 & 4 \\ 3 & -2 & 3\end{array}\right]$
(b) Solve the equations using Gauss Jordan method
$\mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3}=8,2 \mathrm{x}_{1}+3 \mathrm{x}_{2}+2 \mathrm{x}_{3}=19,4 \mathrm{x}_{1}+2 \mathrm{x}_{2}+3 \mathrm{x}_{3}=23$
2. Find Eigen Vectors of $A=\left[\begin{array}{ccc}8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3\end{array}\right]$
3. (a) Find the nature of the quadratic form $5 x^{2}+5 y^{2}+14 z^{2}+2 x y-16 y z-8 z x$
(b) If $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 3\end{array}\right]$ then find A^{50}
4. (a) Using Newton- Raphson's method compute $\sqrt{41}$ correct to four decimal places.
(b) Find a real root of the equation $e^{x}=x+2$ in the interval [1, 1.4] using bisection method.
5. (a) Find the value of y from the following data at $\mathrm{x}=0.47$

$\mathrm{x}:$	0	1	2	3	4	5
$\mathrm{y}:$	1	2	4	7	11	16

(b) Use Lagrange's interpolation formula, find $\mathrm{f}(4)$ from the following data.

x	1	2	5	6	9
$y=f(x)$	2	8	17	20	35

6. (a) The population of a certain town (as obtained from census data) is shown in the following table:

Year	1891	1901	1911	1921	1931
Population(in thousand)	46	66	81	93	101

Estimate the rate of growth of the population in the year 1921
(b) When a train is moving at $30 \mathrm{~m} / \mathrm{sec}$, steam is shut off and brakes are applied. The speed of the train per second after t seconds is given by

Time (t):	0	5	10	15	20	25	30	35	40
Speed(v):	30	24	19.5	16	13.6	11.7	10	8.5	7.0

Using Simpson's rule, determine the distance moved by the train in 40 seconds.

$$
[8+7]
$$

7. (a) Solve $y^{1}=1+y^{2}, y(0)=0$ by Taylor series method and hence find $y(0.2), y(0.4)$
(b) Solve $y^{1}=x y^{2}, y(0)=1$ by Picard's method and compare the solution with exact solution
8. (a) Fit a least square parabola $\mathrm{y}=\mathrm{a}+\mathrm{bx}+\mathrm{cx}^{2}$ to the following data

x	1	2	3	4	5
y	2	3	5	8	10

(b) Fit a straight line of the form $\mathrm{y}=\mathrm{a}+\mathrm{bx}$ to the following data

x	-1	0	1	2	3	4	5	6
y	10	9	7	5	4	3	0	-1

